Enhance the responsivity of self-driven ultraviolet photodetector by (Al,Ga)N nanowire/graphene/PVDF heterojunction with high stability

Author:

Zhou Min1,Zhao Yukun1ORCID,Zhang Qianyi,Gu Xiushuo,Zhang Jianya2,Jiang Min1ORCID,Lu Shulong1

Affiliation:

1. University of Science and Technology of China

2. Suzhou University of Science and Technology

Abstract

Due to the low-power consumption, self-driven ultraviolet (UV) photodetectors have great potentials in a broad range of applications, such as optical communication, ozone monitoring, bio-medicine, and flame detection. In this Letter, it is pretty novel to enhance the photocurrent and responsivity of self-driven UV photodetectors by (Al,Ga)N nanowire/graphene/polyvinylidene fluoride (PVDF) heterojunction successfully. Compared to those of the photodetector with only nanowire/graphene heterojunction, it is found that both the photocurrent and responsivity of the photodetector with nanowire/graphene/PVDF heterojunction can be enhanced more than 100%. It is proposed that PVDF could maintain the internal gain by increasing the number of carrier cycles. Furthermore, this photodetector can also have a high detectivity of 5.3×1011 Jones and fast response speed under 310 nm illumination. After preserving for one month without any special protection, both photocurrent and responsivity of the photodetector with nanowire/graphene/PVDF heterojunction are demonstrated to be quite stable. Therefore, this work paves an effective way to improve the performance of photodetectors for their applications in the fields of next-generation optoelectronic devices.

Funder

Key Research Program of Frontier Science, Chinese Academy of Sciences

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Vacuum Interconnected Nanotech Workstation, Suzhou Institute of Nano-Tech and Nano-Bionics

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3