Optimal design of a gravitational wave telescope system for the suppression of stray light

Author:

Liang Rong1,Zhou Xiaojun,Xu Huangrong,Wu Dengshan,Li Chenxi,Yu Weixing1ORCID

Affiliation:

1. University of Chinese Academy of Sciences

Abstract

For gravitational wave detection, the telescope is required to have an ultra-low wavefront error and ultra-high signal-to-noise ratio, where the power of the stray light should be controlled on the order of less than 10−10. In this work, we propose an alternative stray light suppression method for the optical design of an off-axis telescope with four mirrors by carefully considering the optimal optical paths. The method includes three steps. First, in the period of the optical design, the stray light caused by the tertiary mirror and the quaternary mirror is suppressed by increasing the angle formed by the optical axes of the tertiary mirror and the quaternary mirror and reducing the radius of curvature of the quaternary mirror as much as possible to make sure the optical system provides a beam quality with a wavefront error less than λ/80. Next, the stray light could satisfy the requirement of the order of 10−10 when the level of roughness reaches 0.2 nm, and the pollution of mirrors is controlled at the level of CL100. Finally, traditional stray light suppression methods should also be applied to mechanics, including the use of the optical barrier, baffle tube, and black paint. It can be seen that the field stop can efficiently reduce stray light caused by the secondary mirror by more than 55% in the full field of view. The baffle tube mounted on the position of the exit pupil can reduce the overall stray light energy by 5%, and the difference between the ideal absorber (absorption coefficient is 100%) and the actual black paint (absorption coefficient is 90%) is 3.2%. These simulation results are confirmed by the Monte Carlo method for a stray light analysis. Based on the above results, one can conclude that the geometry structure of the optical design, the quality of mirrors, and the light barrier can greatly improve the stray light suppression ability of the optical system, which is vital when developing a gravitational wave telescope with ultra-low stray light energy.

Funder

National Key Research and Development Program of China

CAS Specific Research Assistant Funding Program

Natural Science Basic Research Program of Shaanxi Province

Publisher

Optica Publishing Group

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3