Dual-path joint correction network for underwater image enhancement

Author:

Zhang Dehuan,Shen Jiaqi,Zhou JingchunORCID,Chen Erkang1,Zhang Weishi

Affiliation:

1. Jimei University

Abstract

Acquired underwater images often suffer from severe quality degradation, such as color shift and detail loss due to suspended particles’ light absorption and scattering. In this paper, we propose a Dual-path Joint Correction Network (DJC-NET) to cope with the above degenerate issues, preserving different unique properties of underwater images in a dual-branch way. The design of the light absorption correction branch is to improve the selective absorption of light in water and remove color distortion, while the light scattering correction branch aims to improve the blur caused by scattering. Concretely, in the light absorption correction path, we design the triplet color feature extraction module, which balances the triplet color distribution of the degraded image through independent feature learning between R, G, and B channels. In the light scattering correction path, we develop a dual dimensional attention mechanism to extract the texture information from the features, aiming to recover sufficient details by more effective feature extraction. Furthermore, our method utilizes the multi-scale U-net to adaptively fusion features from different paths to generate enhanced images. Extensive visual and objective experimental results demonstrate that our method outperforms state-of-the-art methods in various underwater scenes.

Funder

Fundamental Research Funds for the Central Universities

Liaoning Provincial Natural Science Foundation of China

National Natural Science Foundation of China

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3