3D error calibration of spatial spots based on dual position-sensitive detectors

Author:

Cheng Shaowei1ORCID,Liu Jin1,Li Zeng2,Zhang Pengcheng13,Chen Jiquan4,Yang Haima56ORCID

Affiliation:

1. Shanghai University of Engineering Science

2. Shanghai Yihao Testing Technology Co., Ltd.

3. INESA(Group)Co., Ltd. R&D Center

4. Yalong Intelligent Equipment Group Co., Ltd.

5. University of Shanghai for Science and Technology

6. Chinese Academy of Sciences

Abstract

In this paper, a dual position-sensitive detector-based vision measurement system camera is built instead of a traditional CCD camera. The 3D position information for the light point is calculated according to the 2D coordinate information of a certain light point in the space illuminated on the two position-sensitive detector (PSD) photosensitive surfaces, which is used for position detection of the spatial light point. In addition, the positioning model for 2D PSDs with different spot sizes in the Gaussian spot mode is derived by the mathematical model of Lucovsky’s differential equation for a PSD. For the nonlinear distortion of the PSD, a nonlinear error calibration method using a particle swarm combined with a back propagation neural network is proposed to correct the errors in the measured values through the relationship between the input and output values, to obtain the predicted value that approximates the real coordinates. Then, by comparing the influence of different spot sizes on the positioning accuracy, we conclude that the smaller the spot formed by the convergence of the beam under the optical lens, the higher the positioning accuracy. We believe this conclusion can help improve the accuracy of PSD measurements. Finally, a red LED light spot is set up, and the 3D position measurement and error calibration of the light spot is done by dual PSD cameras, which better solves the position detection problem of a space light spot under close-range conditions because it is fast, reliable, and easy to implement. It also provides an effective method to detect the motion trajectory of a moving light spot in space.

Funder

Scientific and Innovative Action Plan of Shanghai

National Natural Science Foundation of China

Key Laboratory of Space Active Opto-electronics Technology

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics,Engineering (miscellaneous),Electrical and Electronic Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3