Efficient fluorescence coupling microlens integrated fiber magnetometer probe based on nitrogen vacancy centers

Author:

Zhao Man,Lin Qijing1,Meng Qingzhi,Shan Wenjun,Zhu Liangquan,Chen YaoORCID,Zhao Libo1,Jiang Zhuangde

Affiliation:

1. Shandong Laboratory of Yantai Advanced Materials and Green Manufacturing

Abstract

The nitrogen vacancy (NV) centers in diamonds have gathered increasing interest as an emerging quantum sensing platform with high sensitivity and spatial resolution. Integration of micro-sized diamond and fiber is an essential method to build an NV center endoscope probe and enable NV center sensors for practical application. However, the low fluorescence collection efficiency of fibers due to their small numerical aperture (NA) has limited the sensitivity of the sensors. In this paper, a cone-shape microlens was fabricated using the photopolymerization process at the end of a multimode fiber to boost the laser excitation and fluorescence collection efficiency of NV centers. Experiments demonstrated that over 21 times fluorescence intensity enhancement and 12 times sensitivity improvement were achieved. This fiber–microlens magnetometer probe exhibited a 2.1-nT/Hz1/2 sensitivity over a bandwidth of 100 Hz with ∼80-µm diameter diamond. This research presented a robust and large NA diamond integrated fiber–microlens magnetometer probe, which can also be expanded to magnetic field scan and real-time monitoring.

Funder

National Key Research and Development Program of China

Natural Science Foundation for Young Scientists of Shanxi Province

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3