The Transcription Factor Sox6 Controls Renin Expression during Renal Artery Stenosis

Author:

Saleem Mohammad,Saavedra-Sánchez Luz,Barturen-Larrea Pierina,Gomez Jose A.ORCID

Abstract

AbstractBackgroundRenal artery stenosis (RAStenosis) or renal artery occlusion is an intractable problem affecting about 6% of people >65 and up to 40% of people with coronary or peripheral vascular disease in the Unites States. The renal renin-angiotensin-aldosterone system plays a key role in RAStenosis, with renin (which is mainly produced in the kidney) being recognized as the driver of the disease. In this study, we will determine a new function for the transcription factor Sox6 in the control of renal renin during RAStenosis.MethodsWe hypothesize that knocking out Sox6 in Ren1d-positive cells will protect mice against renovascular hypertension and kidney injury. To test our hypothesis, we used a new transgenic mouse model, Ren1dcre/Sox6fl/fl (Sox6 KO), in which Sox6 is knocked out in renin-expressing cells. We used a modified two-kidney, one-clip (2K1C) Goldblatt mouse model to induce RAStenosis and renovascular hypertension. BP was measured using the tail-cuff method. Renin, prorenin, Sox6, and NGAL expressions levels were measured with Western blot, in situ hybridization, and immunohistochemistry. Creatinine levels were measured using the colorimetric assay.ResultsSystolic BP was significantly lower in Sox6 KO 2 weeks after RAStenosis compared with Sox6 WT (Ren1dcre/Sox6wt/wt). Renin, prorenin, and NGAL expression levels in the stenosed kidney were lower in Sox6 KO compared with Sox6 WT mice. Furthermore, creatinine clearance was preserved in Sox6 KO compared with Sox6 WT mice.ConclusionsOur data indicate that Sox6 controls renal renin and prorenin expression and, as such, has a function in renovascular hypertension induced by RAStenosis. These results point to a novel transcriptional regulatory network controlled by Sox6.

Funder

National Heart, Lung, and Blood Institute

Research Scientist Development

Publisher

American Society of Nephrology (ASN)

Subject

General Medicine

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3