A Computable Phenotype for Autosomal Dominant Polycystic Kidney Disease

Author:

Kalot Mohamad A.ORCID,El Alayli Abdallah,Al Khatib Mohammad,Husainat Nedaa,McGreal Kerri,Jalal Diana I.,Yu Alan S.L.ORCID,Mustafa Reem A.ORCID

Abstract

BackgroundA computable phenotype is an algorithm used to identify a group of patients within an electronic medical record system. Developing a computable phenotype that can accurately identify patients with autosomal dominant polycystic kidney disease (ADPKD) will assist researchers in defining patients eligible to participate in clinical trials and other studies. Our objective was to assess the accuracy of a computable phenotype using International Classification of Diseases 9th and 10th revision (ICD-9/10) codes to identify patients with ADPKD.MethodsWe reviewed four random samples of approximately 250 patients on the basis of ICD-9/10 codes from the EHR from the Kansas University Medical Center database: patients followed in nephrology clinics who had ICD-9/10 codes for ADPKD (Neph+), patients seen in nephrology clinics without ICD codes for ADPKD (Neph−), patients who were not followed in nephrology clinics with ICD codes for ADPKD (No Neph+), and patients not seen in nephrology clinics without ICD codes for ADPKD (No Neph−). We reviewed the charts and determined ADPKD status on the basis of internationally accepted diagnostic criteria for ADPKD.ResultsThe computable phenotype to identify patients with ADPKD who attended nephrology clinics has a sensitivity of 99% (95% confidence interval [95% CI], 96.4 to 99.7) and a specificity of 84% (95% CI, 79.5 to 88.1). For those who did not attend nephrology clinics, the sensitivity was 97% (95% CI, 93.3 to 99.0), and a specificity was 82% (95% CI, 77.4 to 86.1).ConclusionA computable phenotype using the ICD-9/10 codes can correctly identify most patients with ADPKD, and can be utilized by researchers to screen health care records for cohorts of patients with ADPKD with acceptable accuracy.

Funder

Kansas PKD Research and Translation Core Center

CTSA Award

HERON

Publisher

American Society of Nephrology (ASN)

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3