Data Driven Approach to Characterize Rapid Decline in Autosomal Dominant Polycystic Kidney Disease

Author:

Sim John J.ORCID,Shu Yu-Hsiang,Bhandari Simran K.,Chen Qiaoling,Harrison Teresa N.ORCID,Lee Min Young,Munis Mercedes A.,Morrissette KerresaORCID,Sundar Shirin,Pareja Kristin,Nourbakhsh Ali,Willey Cynthia J.

Abstract

AbstractBackgroundAutosomal dominant polycystic kidney disease (ADPKD) is a genetic kidney disease with high phenotypic variability. Insights into ADPKD progression could lead to earlier detection and management prior to end stage kidney disease (ESKD). We sought to identify patients with rapid decline (RD) in kidney function and to determine clinical factors associated with RD using a data-driven approach.MethodsA retrospective cohort study was performed among patients with incident ADPKD (1/1/2002-12/31/2018). Latent class mixed models were used to identify RD patients using rapidly declining eGFR trajectories over time. Predictors of RD were selected based on agreements among feature selection methods, including logistic, regularized, and random forest modeling. The final model was built on the selected predictors and clinically relevant covariates.ResultsAmong 1,744 patients with incident ADPKD, 125 (7%) were identified as RD. Feature selection included 42 clinical measurements for adaptation with multiple imputations; mean (SD) eGFR was 85.2 (47.3) and 72.9 (34.4) in the RD and non-RD groups, respectively. Multiple imputed datasets identified variables as important features to distinguish RD and non-RD groups with the final prediction model determined as a balance between area under the curve (AUC) and clinical relevance which included 6 predictors: age, sex, hypertension, cerebrovascular disease, hemoglobin, and proteinuria. Results showed 72%-sensitivity, 70%-specificity, 70%-accuracy, and 0.77-AUC in identifying RD. 5-year ESKD rates were 38% and 7% among RD and non-RD groups, respectively.ConclusionUsing real-world routine clinical data among patients with incident ADPKD, we observed that six variables highly predicted RD in kidney function.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3