Extracting feature requests from online reviews of travel industry

Author:

Kumari SupernaORCID,Memon Zulfiqar AliORCID

Abstract

Before product development, Requirement Engineering (RE) is the fundamental need to know customer preferences for any product. Traditionally, RE is carried out in several ways, particularly by conducting interviews, questionnaires, surveys etc. but these methods provide limited amount of data. As user’s preferences vary from country to country for any type of application, it is very hectic and time consuming to collect user requirements from different countries manually. As the internet is widely used now a days, a large number of customer’s reviews are available online that can be used to obtain the requirements for any product without manual work. Online customer reviews can be divided into three types: user experience, bugs and feature requests. Among these 3 categories, feature requests can be very useful for stakeholders (analysts/ requirements engineers) to acquire the requirements of each application. So, the approach is proposed for feature requests extraction from mobile application reviews of travel industry. In this paper, 4 categories of mobile apps of travel industry belonging to 5 countries have been extracted from Google Play Store and Apple Store. For each category, data from 5 different mobile applications have been considered. Since, the review of users from different countries is in their respective language, those reviews are translated into a standard language i.e. English, and then feature requests from these reviews have been extracted. After that, features are retrieved from user reviews and topic modeling is performed on extracted features since one or more features can be modelled under one topic. To know the opinions of users for any feature request, sentiment analysis is also performed on feature request sentences. These feature requests are also classified as Functional and Non-functional Requirements since it is very useful for application developers to improve or maintain the product to better facilitate the application users

Publisher

Universidade Estadual de Maringa

Subject

General Earth and Planetary Sciences,General Physics and Astronomy,General Engineering,General Mathematics,General Chemistry,General Computer Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. T-FREX: A Transformer-based Feature Extraction Method from Mobile App Reviews;2024 IEEE International Conference on Software Analysis, Evolution and Reengineering (SANER);2024-03-12

2. Public Perception of Online P2P Lending Applications;Journal of Theoretical and Applied Electronic Commerce Research;2024-03-01

3. App store mining for feature extraction: analyzing user reviews;Acta Scientiarum. Technology;2023-11-06

4. Mobile Feature-Oriented Knowledge Base Generation Using Knowledge Graphs;New Trends in Database and Information Systems;2023

5. Sentiment analysis on Twitter data integrating TextBlob and deep learning models: The case of US airline industry;Knowledge-Based Systems;2022-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3