App store mining for feature extraction: analyzing user reviews

Author:

Memon Zulfiqar AliORCID,Munawar Nida,Kamal Maha

Abstract

A recent study shows that the most commonly used app stores, iOS app store and Android's play store had up to 2 million apps from where users can explore, purchase, share, download and install applications on a single click. More and more apps are being added daily which makes the app stores a large software repository. An enormous amount of data is provided by the end users in the form of user reviews. This data can provide valuable insights for acquiring requirements. User reviews include plenty of information as they contain information about faulty features (Bug reports), ideas for new features and improvements (feature requests), or user experience that can help app developers and vendors to achieve software enhancement and evolution tasks. As feature requests are the ones that are most helpful for the purpose of eliciting new requirements, the work is done on feature requests out of the 3 categories mentioned above. This study is conducted to provide a general approach that extracts feature request from user reviews. The proposed approach has five main building blocks, namely, (i) Extraction of Feature Requests, (ii) Feature Extraction from Feature Requests, (iii) topic modelling, (iv) sentiment analysis and (v) Classification into Functional Requirements (FR) and Non-Functional Requirements (NFR). Firstly, it finds the feature requests out of the reviews, then perform extraction of features from feature requests, then further work on grouping the features into topics, next apply sentiment analysis to mine the user opinions on the extracted topic and finally group them into Functional and Non-Functional requirements. This article provides the app developers a more user-centred definition of requirements and improvements. At the topic modelling phase, the results received the highest coherence score, 0.70, with k=22 topics. Sentiment analysis is used to classify feature request, with an accuracy of 80.20%, precision of 84.25%, and recall of 80.42%. With an accuracy of 84.4%, requirements are classified quite successfully as well.

Publisher

Universidade Estadual de Maringa

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3