Cell permeabilization of Kluyveromyces and Saccharomyces species to obtain potential biocatalysts for lactose hydrolysis

Author:

Alves Érika de Pádua,Bosso Alessandra,Morioka Luiz Rodrigo ItoORCID,Suguimoto Hélio Hiroshi

Abstract

Yeast’s beta-galactosidase is an intracellular enzyme, through which it is possible to determine in vivo its activity as a biocatalyst in the lactose hydrolysis. Permeabilization process was used for transforming the microorganisms cells into biocatalysts with an enhanced enzyme activity. The potential application of this enzyme technology in industrial process depends mainly on the enzyme activity. Beta-galactosidase enzyme that hydrolyzes lactose, for instance, is largely dependent on the reaction time and its stability under different physical conditions, such as pH, temperature and enzyme concentration. The objective of this study was to optimize the cellular permeabilization process of Kluyveromyces marxianus CCT 3172 and Saccharomyces fragilis CCT 7586 cultured in cheese whey for lactose hydrolysis. Box-Behnken design was carried out for cell permeabilization with three independent variables, ethanol concentration, permeabilization time and temperature. The best permeability conditions for K. marxianus CCT 3172 were 27% (v v-1) ethanol, 3 min at 20ºC, with specific enzymatic activity of 0.98 U mg-1. For S. fragilis CCT 7586, a specific enzymatic activity of 1.31 U mg-1 was achieved using 45% (v v-1) of ethanol, 17 min. of reaction under 17ºC. Thus, it was concluded that cellular permeabilization with ethanol is an efficient process to determine beta-galactosidase activity.

Funder

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

Publisher

Universidade Estadual de Maringa

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3