Nanobiohybrids: A Synergistic Integration of Bacteria and Nanomaterials in Cancer Therapy

Author:

Chen Yuhao1,Du Meng1,Yu Jinsui1,Rao Lang2,Chen Xiaoyuan2,Chen Zhiyi1

Affiliation:

1. Department of Ultrasound Medicine, Laboratory of Ultrasound Molecular Imaging, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China

2. Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland, USA

Abstract

Abstract Cancer is a common cause of mortality in the world. For cancer treatment modalities such as chemotherapy, photothermal therapy and immunotherapy, the concentration of therapeutic agents in tumor tissue is the key factor which determines therapeutic efficiency. In view of this, developing targeted drug delivery systems are of great significance in selectively delivering drugs to tumor regions. Various types of nanomaterials have been widely used as drug carriers. However, the low tumor-targeting ability of nanomaterials limits their clinical application. It is difficult for nanomaterials to penetrate the tumor tissue through passive diffusion due to the elevated tumoral interstitial fluid pressure. As a biological carrier, bacteria can specifically colonize and proliferate inside tumors and inhibit tumor growth, making it an ideal candidate as delivery vehicles. In addition, synthetic biology techniques have been applied to enable bacteria to controllably express various functional proteins and achieve targeted delivery of therapeutic agents. Nanobiohybrids constructed by the combination of bacteria and nanomaterials have an abundance of advantages, including tumor targeting ability, genetic modifiability, programmed product synthesis, and multimodal therapy. Nowadays, many different types of bacteria-based nanobiohybrids have been used in multiple targeted tumor therapies. In this review, firstly we summarized the development of nanomaterial-mediated cancer therapy. The mechanism and advantages of the bacteria in tumor therapy are described. Especially, we will focus on introducing different therapeutic strategies of nanobiohybrid systems which combine bacteria with nanomaterials in cancer therapy. It is demonstrated that the bacteria-based nanobiohybrids have the potential to provide a targeted and effective approach for cancer treatment.

Publisher

Compuscript, Ltd.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3