Effects of Mechanical and Chemical Stimuli on Differentiation of Human Adipose-Derived Stem Cells into Endothelial Cells

Author:

Shojaei Shahrokh1,Tafazzoli-Shahdpour Mohamad1,Shokrgozar Mohamad Ali2,Haghighipour Nooshin2

Affiliation:

1. Cardiovascular Engineering Lab, Faculty of Biomedical Engineering, Amirkabir University of Technology, Tehran - Iran

2. National Cell Bank of Iran, Pasteur institute of Iran, Tehran - Iran

Abstract

It has been hypothesized that application of the micromechanical environment that target cells experience in vivo enhances functionality of differentiated cells. Vascular endothelial cells, functioning at the interface of the blood-vessel wall, are vital to the performance of the cardiovascular system. They are subject to shear and tensile stresses induced by blood flow and pressure, respectively. This study investigated effects of shear/tensile stresses on endothelial differentiation of adipose-derived mesenchymal stem cells (ASCs) utilizing a custom-made bioreactor capable of applying both shear and tensile stresses. The loading values of 10% cyclic stretch, 0-2.5 dyn/cm2 cyclic shear stress, and combined loadings were used. To examine the extent of mechanical and chemical stimuli in acquisition of endothelial characteristics by ASCs, the expression of three major endothelial genes were quantified when ASCs were treated by three loading regimes and endothelial growth factor for three different durations (1, 2, and 7 days). In general, cyclic stretch decreased expression of FLK-1 and vWF, while cyclic shear elevated expression levels. The combined loading regime had minor effects on the expression of the two markers. All types of loadings significantly enhanced the expression level of VE-cadherin with the most prominent increase by combined loading. It was concluded that applying different loading regimes assists in adjusting the expression level of endothelial markers to achieve functional endothelial cells for cardiovascular engineering.

Publisher

SAGE Publications

Subject

Biomedical Engineering,Biomaterials,General Medicine,Medicine (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3