Force sensing and generation in cell phases: analyses of complex functions

Author:

Döbereiner Hans-Günther,Dubin-Thaler Benjamin J.,Giannone Gregory,Sheetz Michael P.

Abstract

Cellular morphology is determined by motility, force sensing, and force generation that must be finely controlled in a dynamic fashion. Contractile and extensile functions are integrated with the overall cytoskeleton, including linkages from the cytoplasmic cytoskeleton to the extracellular matrix and other cells by force sensing. During development, as cells differentiate, variations in protein expression levels result in morphological changes. There are two major explanations for motile behavior: either cellular motility depends in a continuous fashion on cell composition or it exhibits phases wherein only a few protein modules are activated locally for a given time. Indeed, in support of the latter model, the quantification of cell spreading and other motile activities shows multiple distinct modes of behavior, which we term “phases” because there exist abrupt transitions between them. Cells in suspension have a basal level of motility that enables them to probe their immediate environment. After contacting a matrix-coated surface, they rapidly transition to an activated spreading phase. After the development of a significant contact area, the cells contract repeatedly to determine the rigidity of the substrate and then develop force on matrix contacts. When cells are fully spread, extension activity is significantly decreased and focal complexes start to assemble near the cell periphery. For each of these phases, there are significant differences in protein activities, which correspond to differences in function. Thus overall morphological change of a tissue is driven by chemical signals and force-dependent activation of one or more motile phases in limited cell regions for defined periods.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 51 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3