Hemodialysis Membrane Coated with a Polymer Having a Hydrophilic Blood-Contacting Layer can Enhance Diffusional Performance

Author:

Tagaya Masashi1,Nagoshi Saki2,Matsuda Morihiro3,Takahashi Shunsuke4,Okano Shinya1,Hara Kazunobu1

Affiliation:

1. Department of Medical Engineering, National Hospital Organization Kure Medical Center and Chugoku Cancer Center, Hiroshima - Japan

2. Department of Clinical Laboratory, National Hospital Organization Kure Medical Center and Chugoku Cancer Center, Hiroshima - Japan

3. Division of Preventive Medicine, Institution for Clinical Research, National Hospital Organization Kure Medical Center and Chugoku Cancer Center, Hiroshima - Japan

4. Department of Nephrology, National Hospital Organization Kure Medical Center and Chugoku Cancer Center, Hiroshima - Japan

Abstract

Purpose Currently, the foreign surfaces of various extracorporeal circulation devices are coated with a biocompatible polymer coating agent (BPA), which creates a hydrophilic blood-contacting layer to reduce thrombogenicity, while the membranes in hemodialyzers are not. We aimed to clarify other side effects of BPA-coated membranes by examining the diffusion performance in in vitro experiments. Methods We used a polyethersulfone membrane (sieving coefficient of albumin is ≤0.01) coated with BPA product, SEC-1™ (Toyobo), in a hemodialyzer. To estimate the diffusion rates of a wide range of molecules, 2 L of saline containing vancomycin, lysozyme, and albumin were recirculated in the circuit configured with a hemodialyzer, and dialyzed continuously using water. The concentrations of sodium, vancomycin, lysozyme, and albumin were measured every 5 minutes for 30 minutes and compared in experiments with BPA-coated (n = 4) and BPA-noncoated (n = 4) membranes. Results The removal rates of sodium and vancomycin after 5 minutes of dialysis (n = 24) were significantly higher in BPA-coated than noncoated membranes, while those of lysozyme and albumin were not significantly different. The removal rates of sodium and vancomycin after 30 minutes of dialysis (n = 4) were significantly higher, and those of lysozyme were significantly lower in BPA-coated than noncoated membranes, while those of albumin were not significantly different. Conclusions The preliminary study suggests that BPA-coated membranes enhanced the diffusion rate of molecules with low and middle molecular weight without affecting the sieving coefficient of albumin. Thus, BPA coating can enhance the dialysis performance of membranes.

Publisher

SAGE Publications

Subject

Biomedical Engineering,Biomaterials,General Medicine,Medicine (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3