Design and Numerical Evaluation of an Axial Partial-assist Blood Pump for Chinese and other Heart Failure Patients

Author:

Liu Guang-Mao1,Jin Dong-Hai23,Zhou Jian-Ye1,Jiang Xi-Hang4,Sun Han-Song1,Zhang Yan1,Chen Hai-Bo1,Hu Sheng-Shou1,Gui Xing-Min23

Affiliation:

1. State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing - China

2. School of Energy and Power Engineering, Beihang University, Beijing - China

3. Co-Innovation Center for Advanced Aero-Engine, Beijing - China

4. Beijing Power Machinery Research Institute, Beijing - China

Abstract

A fully implantable axial left ventricular assist device LAP31 was developed for Chinese or other heart failure patients who need partial support. Based on the 5-Lpm total cardiac blood output of Chinese without heart failure disease, the design point of LAP31 was set to a flow rate of 3 Lpm with 100-mmHg pressure head. To achieve the required pressure head and good hemolytic performance, a structure that includes a spindly rotor hub and a diffuser with splitter and cantilevered main blades was developed. Computational fluid dynamics (CFD) was used to analyze the hydraulic and hemodynamic performance of LAP31. Then in vitro hydraulics experiments were conducted. The numerical simulation results show that LAP31 could generate a 1 to 8 Lpm flow rate with a 60.9 to 182.7 mmHg pressure head when the pump was rotating between 9,000 and 12,000 rpm. The average scalar shear stress of the blood pump was 21.7 Pa, and the average exposure time was 71.0 milliseconds. The mean hemolysis index of LAP31 obtained using Heuser's hemolysis model and Giersiepen's model was 0.220% and 3.89 × 105% respectively. After adding the splitter blades, the flow separation at the suction surface of the diffuser was reduced. The cantilever structure reduced the tangential velocity from 6.1 to 4.7–1.4 m/s within the blade gap by changing the blade gap from shroud to hub. Subsequently, the blood damage caused by shear stress was reduced. In conclusion, the hydraulic and hemolytic characteristics of the LAP31 are acceptable for partial support.

Publisher

SAGE Publications

Subject

Biomedical Engineering,Biomaterials,General Medicine,Medicine (miscellaneous),Bioengineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3