Experimental investigation of the influence of the hydraulic performance of an axial blood pump on intraventricular blood flow

Author:

Liu Guang-Mao12ORCID,Jiang Fu-Qing12,Yang Xiao-Han2,Wei Run-Jie3,Hu Sheng-Shou12

Affiliation:

1. State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China

2. Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen, China

3. Microvec Inc., Beijing, China

Abstract

Blood flow inside the left ventricle (LV) is a concern for blood pump use and contributes to ventricle suction and thromboembolic events. However, few studies have examined blood flow inside the LV after a blood pump was implanted. In this study, in vitro experiments were conducted to emulate the intraventricular blood flow, such as blood flow velocity, the distribution of streamlines, vorticity and the standard deviation of velocity inside the LV during axial blood pump support. A silicone LV reconstructed from computerized tomography (CT) data of a heart failure patient was incorporated into a mock circulatory loop (MCL) to simulate human systemic circulation. Then, the blood flow inside the ventricle was examined by particle image velocimetry (PIV) equipment. The results showed that the operating conditions of the axial blood pump influenced flow patterns within the LV and areas of potential blood stasis, and the intraventricular swirling flow was altered with blood pump support. The presence of vorticity in the LV from the thoracic aorta to the heart apex can provide thorough washing of the LV cavity. The gradually extending stasis region in the central LV with increasing blood pump support is necessary to reduce the thrombosis potential in the LV.

Funder

the Program for Guangdong Introducing Innovative and Entrepreneurial Teams

beijing science and technology planning project

Publisher

SAGE Publications

Subject

Biomedical Engineering,Biomaterials,General Medicine,Medicine (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3