Towards user-oriented privacy for recommender system data: A personalization-based approach to gender obfuscation for user profiles

Author:

Slokom ManelORCID,Hanjalic AlanORCID,Larson Martha

Publisher

Elsevier BV

Subject

Library and Information Sciences,Management Science and Operations Research,Computer Science Applications,Media Technology,Information Systems

Reference81 articles.

1. Beyond personalization: Research directions in multistakeholder recommendation;Abdollahpouri,2019

2. Federank: User controlled feedback with federated recommender systems;Anelli,2021

3. Location privacy protection through obfuscation-based techniques;Ardagna,2007

4. A practical privacy-preserving recommender system;Badsha;Data Science and Engineering,2016

5. Badsha, S., Yi, X., Khalil, I., & Bertino, E. (2017). Privacy preserving user-based recommender system. IEEE 37th international conference on distributed computing systems (pp. 1074–1083).

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Unmasking Privacy: A Reproduction and Evaluation Study of Obfuscation-based Perturbation Techniques for Collaborative Filtering;Proceedings of the 47th International ACM SIGIR Conference on Research and Development in Information Retrieval;2024-07-10

2. Matrix factorization recommender based on adaptive Gaussian differential privacy for implicit feedback;Information Processing & Management;2024-07

3. Consumer-side fairness in recommender systems: a systematic survey of methods and evaluation;Artificial Intelligence Review;2024-03-29

4. Making Alice Appear Like Bob: A Probabilistic Preference Obfuscation Method For Implicit Feedback Recommendation Models;Lecture Notes in Computer Science;2024

5. Exploring the Efforts of IAN-BGRU Justifications in Food Recommender System and its User Preferences;2023 International Conference on Self Sustainable Artificial Intelligence Systems (ICSSAS);2023-10-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3