Battery prognostics and health management for electric vehicles under industry 4.0
Author:
Publisher
Elsevier BV
Subject
Electrochemistry,Energy (miscellaneous),Energy Engineering and Power Technology,Fuel Technology
Reference28 articles.
1. Machine-learning techniques used to accurately predict battery life
2. Closed-loop optimization of fast-charging protocols for batteries with machine learning
3. Machine learning pipeline for battery state-of-health estimation
4. Real-time personalized health status prediction of lithium-ion batteries using deep transfer learning
5. Deep neural network battery charging curve prediction using 30 points collected in 10 min
Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Artificial intelligence-driven real-world battery diagnostics;Energy and AI;2024-12
2. An optimal condition-based maintenance policy for nonlinear stochastic degrading systems;Reliability Engineering & System Safety;2024-11
3. Flexible bidirectional pulse charging regulation achieving long-life lithium-ion batteries;Journal of Energy Chemistry;2024-09
4. Specialized convolutional transformer networks for estimating battery health via transfer learning;Energy Storage Materials;2024-08
5. Insights and reviews on battery lifetime prediction from research to practice;Journal of Energy Chemistry;2024-07
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3