Construction and actual application of In2O3/BiOBr heterojunction for effective removal of ciprofloxacin under visible light: Photocatalytic mechanism, DFT calculation,degradation pathway and toxicity evaluation
Author:
Funder
National Natural Science Foundation of China
Publisher
Elsevier BV
Subject
Materials Chemistry,Metals and Alloys,Mechanical Engineering,Mechanics of Materials
Reference68 articles.
1. Adsorptive removal of antibiotics from aqueous solution using carbon materials;Yu;Chemosphere,2016
2. Human health risk assessment of antibiotic resistance associated with antibiotic residues in the environment: a review;Ben;Environ. Res.,2019
3. Remediation of ciprofloxacin-contaminated soil by nanosecond pulsed dielectric barrier discharge plasma: influencing factors and degradation mechanisms;Aggelopoulos;Chem. Eng. J.,2020
4. Role of humic substances in the degradation pathways and residual antibacterial activity during the photodecomposition of the antibiotic ciprofloxacin in water;Porras;Water Res.,2016
5. Efficient photocatalytic degradation of ciprofloxacin and bisphenol A under visible light using Gd2WO6 loaded ZnO/bentonite nanocomposite;Selvakumar;Appl. Surf. Sci.,2019
Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Photocatalytic application towards the degradation of ciprofloxacin and algae by Z-scheme 2D/3D heterojunction of Bi12O17Cl2/UiO-66-NH2;Separation and Purification Technology;2024-12
2. Photocatalytic reaction pathways and mechanisms investigation for effective organic pollution degradation via in-situ construction of BiOCl/UiO66-NH2 heterostructure;Applied Surface Science;2024-10
3. Novel synthesis of Ti3C2 MXene/ZnO/CdSe for sonoelectron and photoelectron triggered synergetic sonophotocatalytic degradation with various antibiotics;FlatChem;2024-09
4. NH2-UiO-66 modification BiOBr enhancement photoreduction CO2 to CO;Separation and Purification Technology;2024-09
5. Removal of Hg(II) with MgAl-layered double hydroxide functionalized by schiff base ligands: Application and condition optimization;Chemosphere;2024-09
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3