Evolution of Adaptive Neural Networks: The Role of Voltage-Dependent K+ channels

Author:

Alkon Daniel L.1,Favit Antonella1,Nelson Thomas1

Affiliation:

1. Laboratory of Adaptive Systems, National Institutes of Health, Bethesda, Maryland

Abstract

The vestibular pathway of the mollusk Hermissenda crassicornis mediates a reflexive, unconditioned response to disorientation, clinging, that has been conserved during evolution even to the emergence of our own species. This response becomes associated with a visual stimulus (mediated by a precisely ordered visual-vestibular synaptic network) according to principles of Pavlovian conditioning that are also followed in human learning. It is not entirely surprising therefore that molecular and biophysical cascades responsible for this associative learning appear to function in both mollusks and mammals. In brief, combinational elevation of [Ca2+]i, diacylglycerol, and arachidonic acid activates protein kinase C to phosphorylate the Ca2+ and guanosine triphosphate-binding protein, cp20 (now called calexcitin [Nelson T, et al. Proc Natl Acad Sci USA 1996;93:13808–13]), which potently inactivates postsynaptic voltage-dependent K+ currents and thereby increases synaptic weight. Longer term changes included rearrangement of synaptic terminals and modified protein synthesis. This cascade has also been implicated in other associative-learning paradigms (e.g., spatial maze, olfactory discrimination) and as a pathophysiologic target in early Alzheimer's disease. Recent molecular biologic experiments also demonstrate the dependence of associative memory (but not long-term potentiation) on voltage-dependent K+ currents. Theoretic learning models based on these findings focus on dendritic spine clusters and yield computer implementations with powerful pattern-recognition capabilities.

Publisher

SAGE Publications

Subject

Otorhinolaryngology,Surgery

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3