Classical conditioning reduces amplitude and duration of calcium-dependent afterhyperpolarization in rabbit hippocampal pyramidal cells

Author:

Coulter D. A.1,Lo Turco J. J.1,Kubota M.1,Disterhoft J. F.1,Moore J. W.1,Alkon D. L.1

Affiliation:

1. Laboratory of Molecular and Cellular Neurobiology, National Instituteof Neurological and Communicative Disorders and Stroke, Bethesda, Maryland20892.

Abstract

1. The afterhyperpolarization (AHP) that follows action potentials was studied in CA1 hippocampal pyramidal cells from classically conditioned and control rabbits. Measurements of the AHP were obtained with intracellular recordings from CA1 cells within hippocampal slices. 2. The AHP of rabbit CA1 pyramidal cells was found to be accompanied by a conductance increase. The AHP was reduced by bath applications of the calcium channel blockers, cadmium and cobalt, by bath application of the cholinergic agonist, carbamylcholine chloride, and intracellular injection of the calcium chelator, ethylene glycol-bis(B-aminoethyl ether)-N,N,N',N'-tetraacetic acid (EGTA). 3. The AHP was markedly reduced in cells from rabbits that were well-trained with the nictitating membrane conditioning procedure, as compared with cells from pseudoconditioned or naive control animals. The difference in AHP amplitudes between conditioned and control groups increased as the number of spikes elicited by the stimulation pulse increased from one to four. Both the duration (measured as the time constant of AHP decay) and amplitude of the AHP were reduced in cells from conditioned animals. 4. The reduced AHP in cells from conditioned animals remained reduced in a medium that contained 0.5 microM tetrodotoxin (TTX) and 5.0 mM tetraethylammonium chloride (TEA); the AHP following calcium spikes was measured under these conditions. Since this medium eliminated synaptic transmission elicited by Schaeffer collateral stimulation, the AHP reduction in pyramidal cells from conditioned animals was not due to a modification in synaptic properties. There were no significant differences in the mean voltage thresholds, amplitudes, or durations of calcium spikes between cells from animals in the three groups. Thus the AHP reduction appears to be due to a modification of a Ca2+ -dependent K+ conductance and was not due to a secondary effect of reductions in calcium conductances underlying the spike. 5. In medium containing TTX and TEA, the amount of injected current required to elicit a calcium spike (current threshold) was significantly greater in cells from conditioned animals than in cells from control animals. This increase in current threshold persisted in 4-aminopyridine (4-AP)-containing medium and so cannot be attributed entirely to conditioning-specific increases in the A-current. 6. The conditioning-specific AHP reduction resulted in increased excitability in cells from conditioned animals versus pseudoconditioned control animals. Cells from conditioned animals fired more spikes to trains of 100-ms depolarizing current pulses than did cells from controls.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 190 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3