Development of a machine learning algorithm to predict intubation among hospitalized patients with COVID-19
Author:
Publisher
Elsevier BV
Subject
Critical Care and Intensive Care Medicine
Reference24 articles.
1. Classification of COVID-19 patients from chest CT images using multi-objective differential evolution-based convolutional neural networks;Singh;Eur J Clin Microbiol Infect Dis,2020
2. Sharma S. Drawing Insights from COVID-19 Infected Patients With no Past Medical History Using CT Scan Images and Machine Learning Techniques: A Study on 200 Patients n.d. 10.21203/rs.3.rs-23863/v1.
3. Modeling the trend of coronavirus disease 2019 and restoration of operational capability of metropolitan medical service in China: A machine learning and mathematical model-based analysis;Liu;Glob Health Res Policy,2020
4. Using machine learning to estimate unobserved COVID-19 infections in North America;Vaid;J Bone Joint Surg Am,2020
5. Chen X, Liu Z. Early prediction of mortality risk among severe COVID-19 patients using machine learning n.d. https://doi.org/10.1101/2020.04.13.20064329.
Cited by 47 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Explainable artificial intelligence (XAI) for predicting the need for intubation in methanol-poisoned patients: a study comparing deep and machine learning models;Scientific Reports;2024-07-08
2. A risk prediction model for efficient intubation in the emergency department: A 4‐year single‐center retrospective analysis;Journal of the American College of Emergency Physicians Open;2024-05-31
3. The economics of deep and machine learning-based algorithms for COVID-19 prediction, detection, and diagnosis shaping the organizational management of hospitals;Oeconomia Copernicana;2024-03-30
4. COVID-19 outbreaks surveillance through text mining applied to electronic health records;BMC Infectious Diseases;2024-03-28
5. Machine Learning First Response to COVID-19: A Systematic Literature Review of Clinical Decision Assistance Approaches during Pandemic Years from 2020 to 2022;Electronics;2024-03-07
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3