Short-term PV power forecast using hybrid deep learning model and Variational Mode Decomposition
-
Published:2023-10
Issue:
Volume:9
Page:712-717
-
ISSN:2352-4847
-
Container-title:Energy Reports
-
language:en
-
Short-container-title:Energy Reports
Author:
Nguyen Trong Thanh,
Vu Xuan Son Huu,
Do Dinh Hieu,
Takano Hirotaka,
Nguyen Duc TuyenORCID
Reference11 articles.
1. A review and evaluation of the state-of-the-art in PV solar power forecasting: Techniques and optimization;Ahmed;Renew Sustain Energy Rev,2020
2. L. Stoyanov, I. Draganovsk, Application of ANN for forecasting of PV plant output power – Case study Oryahovo, in: 2021 17th conference on electrical machines, drives and power systems, ELMA, 2021, pp. 1–5, http://dx.doi.org/10.1109/ELMA52514.2021.9503087.
3. N. Park, H.K. Ahn, Multi-Layer RNN-based Short-term Photovoltaic Power Forecasting using IoT Dataset, in: 2019 AEIT international annual conference, AEIT, 2019, pp. 1–5, http://dx.doi.org/10.23919/AEIT.2019.8893348.
4. Long short-term memory;Hochreiter;Neural Comput,1997
5. CNN-LSTM: An efficient hybrid deep learning architecture for predicting short-term photovoltaic power production;Agga;Electr Power Syst Res,2022
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献