Mood ratings and digital biomarkers from smartphone and wearable data differentiates and predicts depression status: A longitudinal data analysis

Author:

Opoku Asare KennedyORCID,Moshe Isaac,Terhorst YannikORCID,Vega Julio,Hosio Simo,Baumeister HaraldORCID,Pulkki-Råback Laura,Ferreira DenzilORCID

Publisher

Elsevier BV

Subject

Software,Computer Science Applications,Hardware and Architecture,Computer Networks and Communications,Information Systems

Reference55 articles.

1. World health organisation — depression,2020

2. The excess costs of depression: a systematic review and meta-analysis;König;Epidemiol. Psychiatr. Sci.,2019

3. Tracking depression dynamics in college students using mobile phone and wearable sensing;Wang;Proc. ACM Interact. Mob. Wearable Ubiquitous Technol.,2018

4. Quality of life in medically ill persons with comorbid mental disorders: a systematic review and meta-analysis;Baumeister;Psychother. Psychosom.,2011

5. Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990–2017: a systematic analysis for the global burden of disease study 2017;James;Lancet,2018

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Digital phenotyping of depression during pregnancy using self-report data;Journal of Affective Disorders;2024-11

2. Prediction of Depression Severity and Personalised Risk Factors Using Machine Learning on Multimodal Data;International Journal of Online and Biomedical Engineering (iJOE);2024-06-20

3. Using Mobile Daily Mood and Anxiety Self-ratings to Predict Depression Symptom Improvement;2024 IEEE/ACM Conference on Connected Health: Applications, Systems and Engineering Technologies (CHASE);2024-06-19

4. PupilSense: Detection of Depressive Episodes through Pupillary Response in the Wild;2024 International Conference on Activity and Behavior Computing (ABC);2024-05-29

5. Utilizing Machine Learning for Context-Aware Digital Biomarker of Stress in Older Adults;Information;2024-05-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3