Prediction of Depression Severity and Personalised Risk Factors Using Machine Learning on Multimodal Data

Author:

Ayodele AdefemiORCID,Adetunla AdedotunORCID,Akinlabi EstherORCID

Abstract

Depression, a prevalent global mental health disorder, often leads to a reduced quality of life and an increased risk of suicide. Despite the availability of treatments, many cases go undetected, highlighting the need for an accurate machine learning (ML) prediction model for depression severity and risk factors, particularly when dealing with multimodal datasets. Previous studies that utilized ML to predict the severity of depression encountered limitations, such as small datasets and a lack of personalization. This study proposes an optimal algorithm for predicting depression severity and personalized risk factors using ML. The potential benefits include improved accuracy in severity assessment, personalized treatment strategies, and refined risk factor identification. The random forest (RF) algorithm emerged as the most effective, exhibiting notable performance metrics on NHANES data, including a 0.93 R-squared, 0.93 explained variance score (EVS), 0.51 mean absolute error (MAE), 1.73 mean squared error (MSE), and 1.32 root mean squared error (RMSE). Notably, RF identified both general and personalized risk factors for depression severity. This model holds promise for clinical assessment, diagnosis, and intervention planning, contributing significantly to the comprehensive management of depression.

Publisher

International Association of Online Engineering (IAOE)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3