Strength prediction and application of cemented paste backfill based on machine learning and strength correction
Author:
Funder
National Key Research and Development Program of China
Publisher
Elsevier BV
Subject
Multidisciplinary
Reference76 articles.
1. Developing a hybrid model of salp swarm algorithm-based support vector machine to predict the strength of fiber-reinforced cemented paste backfill;Li;Eng. Comput.,2021
2. Cemented paste backfill for mineral tailings management: review and future perspectives;Qi;Miner. Eng.,2019
3. The mechanism of hydrating and solidifying green mine fill materials using circulating fluidized bed fly ash-slag-based agent;Zhang;J. Hazard. Mater.,2021
4. Control of waste rock-tailings paste backfill for active mining subsidence areas;Sun;J. Clean. Prod.,2018
5. Permeability prediction of porous media using a combination of computational fluid dynamics and hybrid machine learning methods;Tian;Eng. Comput.,2021
Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Comparative analysis of cement grade and cement strength as input features for machine learning-based concrete strength prediction;Case Studies in Construction Materials;2024-12
2. Machine learning for predicting compressive strength of sustainable cement paste incorporating copper mine tailings as supplementary cementitious materials;Case Studies in Construction Materials;2024-12
3. Artificial Intelligence Models for Predicting Ground Vibrations in Deep Underground Mines to Ensure the Safety of Their Surroundings;Applied Sciences;2024-05-31
4. Developing interpretable machine learning model for evaluating young modulus of cemented paste backfill;Journal of Intelligent & Fuzzy Systems;2024-05-07
5. On the use of machine learning and data-transformation methods to predict hydration kinetics and strength of alkali-activated mine tailings-based binders;Construction and Building Materials;2024-03
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3