1. Do we need hundreds of classifiers to solve real world classification problems?;Fernández-Delgado;J. Mach. Learn. Res.,2014
2. Jason Van Hulse, Taghi M. Khoshgoftaar, Amri Napolitano, Experimental perspectives on learning from imbalanced data, in: Proceedings of the 24th Annual International Conference on Machine Learning, 2007, pp. 935-942.
3. Jundong Li, Kewei Cheng, Suhang Wang, Fred Morstatter, Robert P Trevino, Jiliang Tang, Huan Liu, Feature selection: A data perspective. arXiv:1601.07996, 2016.
4. The WEKA data mining software: An update;Hall;SIGKDD Explorations,2009
5. Abraham J. Wyner, Matthew Olson, Justin Bleich, David Mease, Explaining the Success of AdaBoost and Random Forests as Interpolating Classifiers. arXiv:1504.07676, 2015.