Author:
Li Meijing,Jiang Yingying,Ryu Keun Ho
Abstract
Protein-protein interaction (PPI) prediction is meaningful work for deciphering cellular behaviors. Although many kinds of data and machine learning algorithms have been used in PPI prediction, the performance still needs to be improved. In this paper, we propose InferSentPPI, a sentence embedding based text mining method with gene ontology (GO) information for PPI prediction. First, we design a novel weighting GO term-based protein sentence representation method to generate protein sentences including multi-semantic information in the preprocessing. Gene ontology annotation (GOA) provides the reliability of relationships between proteins and GO terms for PPI prediction. Thus, GO term-based protein sentence can help to improve the prediction performance. Then we also propose an InferSent_PN algorithm based on the protein sentences and InferSent algorithm to extract relations between proteins. In the experiments, we evaluate the effectiveness of InferSentPPI with several benchmarking datasets. The result shows our proposed method has performed better than the state-of-the-art methods for a large PPI dataset.
Funder
National Natural Science Foundation of China
Subject
Genetics (clinical),Genetics,Molecular Medicine
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献