Funder
National Natural Science Foundation of China
Taishan Scholar Project of Shandong Province
Subject
Computer Graphics and Computer-Aided Design,Health Informatics,Computer Vision and Pattern Recognition,Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology
Reference50 articles.
1. A modality-adaptive method for segmenting brain tumors and organs-at-risk in radiation therapy planning;Agn;Med. Image Anal.,2019
2. Semisupervised learning using denoising autoencoders for brain lesion detection and segmentation;Alex;J. Med. Imaging,2017
3. Automated brain tumour segmentation techniques a review;Angulakshmi;Int. J. Imaging Syst. Technol.,2017
4. Bakas, S., Akbari, H., Sotiras, A., Bilello, M., Rozycki, M., Kirby, J., Freymann, J., Farahani, K., Davatzikos, C., 2017a. Segmentation labels and radiomic features for the pre-operative scans of the TCGA-LGG collection. The Cancer Imaging Archive 286.
5. Advancing The Cancer Genome Atlas glioma MRI collections with expert segmentation labels and radiomic features;Bakas;Sci. Data,2017
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献