A machine learning framework to predict local strain distribution and the evolution of plastic anisotropy & fracture in additively manufactured alloys
Author:
Funder
General Motors of Canada
Natural Resources Canada
Publisher
Elsevier BV
Subject
Mechanical Engineering,Mechanics of Materials,General Materials Science
Reference71 articles.
1. Identification and characterization of spatter particles and their effect on surface roughness, density and mechanical response of 17-4 PH stainless steel laser powder-bed fusion parts;Ali;Mater. Sci. Eng., A,2019
2. Application of artificial neural networks in micromechanics for polycrystalline metals;Ali;Int. J. Plast.,2019
3. Experimental investigation and through process crystal plasticity-static recrystallization modeling of temperature and strain rate effects during hot compression of AA6063;Ali;Mater. Sci. Eng., A,2017
4. On microstructure and mechanical properties of additively manufactured AlSi10Mg_200C using recycled powder;Asgari;Mater. Sci. Eng., A,2017
5. A review of the application of machine learning and data mining approaches in continuum materials mechanics;Bock;Front. Mater.,2019
Cited by 96 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Virtual rapid prototyping of materials with deep learning: spatiotemporal stress fields prediction in ceramics employing convolutional neural networks and transfer learning;Virtual and Physical Prototyping;2024-09-09
2. Data-driven image mechanics (D2IM): A deep learning approach to predict displacement and strain fields from undeformed X-ray tomography images – Evaluation of bone mechanics;Extreme Mechanics Letters;2024-09
3. A review of laser additive manufacturing (LAM) aluminum alloys: Methods, microstructures and mechanical properties;Optics & Laser Technology;2024-08
4. Artificial neural network enhanced plasticity modeling and ductile fracture characterization of grade-1 commercial pure titanium;International Journal of Plasticity;2024-08
5. Rapid prediction of grain boundary network evolution in nanomaterials utilizing a generative machine learning approach;Extreme Mechanics Letters;2024-08
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3