Fatigue damage detection of aerospace-grade aluminum alloys using feature-based and feature-less deep neural networks
Author:
Funder
Department of Mechanical Engineering, College of Engineering, Michigan State University
Pennsylvania State University
Publisher
Elsevier BV
Subject
General Medicine
Reference41 articles.
1. Estimating damage size and remaining useful life in degraded structures using deep learning-based multi-source data fusion;Aria;Structural Health Monitoring,2020
2. E466-15, standard practice for conducting force controlled constant amplitude axial fatigue tests of metallic materials;ASTM;ASTM International,2015
3. Data-driven structural health monitoring and damage detection through deep learning: State-of-the-art review;Azimi;Sensors,2020
4. The state of the art of data science and engineering in structural health monitoring;Bao;Engineering,2019
5. Early detection of fatigue crack damage in ductile materials: A projection-based probabilistic finite state automata approach;Bhattacharya;ASME Letters in Dynamic Systems and Control,2021
Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Prediction maintenance based on vibration analysis and deep learning — A case study of a drying press supported on a Hidden Markov Model;Applied Soft Computing;2024-09
2. Deep Learning and Computer Vision Techniques for Enhanced Quality Control in Manufacturing Processes;IEEE Access;2024
3. Crack Growth Model for Evaluation the Fatigue Life of Aluminum Alloys;Diyala Journal of Engineering Sciences;2023-12-15
4. Fatigue Life Estimation of High Strength 2090-T83 Aluminum Alloy under Pure Torsion Loading Using Various Machine Learning Techniques;Fluid Dynamics & Materials Processing;2023
5. Deep learning-based autonomous damage-sensitive feature extraction for impedance-based prestress monitoring;Engineering Structures;2022-05
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3