Data-driven rapid flood prediction mapping with catchment generalizability
Author:
Funder
China Scholarship Council
Publisher
Elsevier BV
Subject
Water Science and Technology
Reference49 articles.
1. Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., et al., 2016. Tensorflow: A system for large-scale machine learning. In: 12th Symposium on Operating Systems Design and Implementation. USENIX, Savannah, USA. pp. 265-283. doi: 10.1029/2018WR024301.
2. Segnet: A deep convolutional encoder-decoder architecture for image segmentation;Badrinarayanan;IEEE Trans. Pattern Anal. Mach. Intell.,2017
3. An ensemble neural network model for real-time prediction of urban floods;Berkhahn;J. Hydrol.,2019
4. Bui, D.T., Hoang, N.D., Martínez-Álvarez, F., Ngo, P.T.T., Hoa, P.V., Pham, T.D., Costache, R., 2020. A novel deep learning neural network approach for predicting flash flood susceptibility: A case study at a high frequency tropical storm area. Sci. Total Environ. 701, 134413. doi: 10.1016/j.scitotenv.2019.134413.
5. A two-step-ahead recurrent neural network for stream-flow forecasting;Chang;Hydrol. Process.,2004
Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. A hybrid surrogate model for real-time coastal urban flood prediction: An application to Macao;Journal of Hydrology;2024-10
2. Runoff Prediction for Hydrological Applications Using an INFO-Optimized Deep Learning Model;Processes;2024-08-22
3. SHAP-powered insights into spatiotemporal effects: Unlocking explainable Bayesian-neural-network urban flood forecasting;International Journal of Applied Earth Observation and Geoinformation;2024-07
4. Advancing rapid urban flood prediction: a spatiotemporal deep learning approach with uneven rainfall and attention mechanism;Journal of Hydroinformatics;2024-05-28
5. Real-Time Urban Flood Depth Mapping: Convolutional Neural Networks for Pluvial and Fluvial Flood Emulation;Water Resources Management;2024-05-18
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3