Advancing rapid urban flood prediction: a spatiotemporal deep learning approach with uneven rainfall and attention mechanism

Author:

Shao Yu1,Chen Jiarui1,Zhang Tuqiao1,Yu Tingchao1,Chu Shipeng1

Affiliation:

1. 1 College of Civil Engineering and Architecture, Zhejiang University, Key Laboratory of Drinking Water Safety and Distribution Technology of Zhejiang Province, Hangzhou 310058, China

Abstract

ABSTRACT Urban floods pose a significant threat to human communities, making its prediction essential for comprehensive flood risk assessment and the formulation of effective resource allocation strategies. Data-driven deep learning approaches have gained traction in urban emergency flood prediction, addressing the efficiency constraints of physical models. However, the spatial structure of rainfall, which has a profound influence on urban flooding, is often overlooked in many deep learning investigations. In this study, we introduce a novel deep learning model known as CRU-Net equipped with an attention mechanism to predict inundation depths in urban terrains based on spatiotemporal rainfall patterns. This method utilizes eight topographic parameters related to the height of urban waterlogging, combined with spatial rainfall data as inputs to the model. Comparative evaluations between the developed CRU-Net and two other deep learning models, U-Net and ResU-Net, reveal that CRU-Net adeptly interprets the spatiotemporal traits of rainfall and accurately estimates flood depths, emphasizing deep inundation and flood-vulnerable regions. The model demonstrates exceptional accuracy, evidenced by a root mean square error of 0.054 m and a Nash–Sutcliffe efficiency of 0.975. CRU-Net also accurately predicts over 80% of inundation locations with depths exceeding 0.3 m. Remarkably, CRU-Net delivers predictions for 3 million grids in 2.9 s, showcasing its efficiency.

Funder

National Natural Science Foundation of China

Publisher

IWA Publishing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3