The use of machine learning in boron-based geopolymers: Function approximation of compressive strength by ANN and GP
Author:
Funder
Australian Research Council
Publisher
Elsevier BV
Subject
Applied Mathematics,Electrical and Electronic Engineering,Condensed Matter Physics,Instrumentation
Reference29 articles.
1. Prediction of principal ground-motion parameters using a hybrid method coupling artificial neural networks and simulated annealing;Alavi;Comput. Struct.,2011
2. Compressive strength of high strength class C fly ash-based geopolymers with reactive granulated blast furnace slag aggregates designed by Taguchi method;Bagheri;Mater. Des.,2014
3. Microstructural study of environmentally friendly boroaluminosilicate geopolymers;Bagheri;J. Cleaner Prod.,2018
4. Fibre-reinforced boroaluminosilicate geopolymers: a comparative study;Bagheri;Ceram. Int.,2018
5. Alkali activated materials vs geopolymers: role of boron as an eco-friendly replacement;Bagheri;Constr. Build. Mater.,2017
Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. A critical review on modeling and prediction on properties of fresh and hardened geopolymer composites;Journal of Building Engineering;2024-07
2. Modelling the compressive strength of geopolymer recycled aggregate concrete using ensemble machine learning;Advances in Engineering Software;2024-05
3. A Comparative Predicting ML Model for Compressive Strength of Fly Ash/GGBFS Geopolymer Concrete;2024-03-04
4. Oil Production Rate Forecasting by SA-LSTM Model in Tight Reservoirs;Lithosphere;2024-01-12
5. Evaluating the strength loss and the effectiveness of glass and eggshell powder for cement mortar under acidic conditions;REVIEWS ON ADVANCED MATERIALS SCIENCE;2024-01-01
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3