Data augmentation via variational mode reconstruction and its application in few-shot fault diagnosis of rolling bearings
Author:
Funder
National Natural Science Foundation of China
Publisher
Elsevier BV
Subject
Applied Mathematics,Electrical and Electronic Engineering,Condensed Matter Physics,Instrumentation
Reference35 articles.
1. A novel correntropy-based band selection method for the fault diagnosis of bearings under fault-irrelevant impulsive and cyclostationary interferences;Ni;Mech. Syst. Sig. Process.,2021
2. Investigation of the orbit-spinning behaviors of the outer ring in a full ceramic ball bearing-steel pedestal system in wide temperature ranges;Shi;Mech. Syst. Sig. Process.,2021
3. Intelligent fault diagnosis of rotating machinery based on continuous wavelet transform-local binary convolutional neural network;Cheng;Knowl.-Based Syst.,2021
4. A multi-stage semi-supervised learning approach for intelligent fault diagnosis of rolling bearing using data augmentation and metric learning;Yu;Mech. Syst. Sig. Process.,2021
5. A fault information-guided variational mode decomposition (FIVMD) method for rolling element bearings diagnosis;Ni;Mech. Syst. Sig. Process.,2022
Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Failure Mode Classification for Rolling Element Bearings Using Time-Domain Transformer-Based Encoder;Sensors;2024-06-18
2. A Multi-task Learning Method for Few-Shot Fault Diagnosis Based on Metric Learning;Mechanisms and Machine Science;2024
3. Deep residual shrinkage networks with adaptively convex global parametric rectifier linear units for fault diagnosis;Measurement Science and Technology;2023-11-15
4. EC-WGAN: Enhanced Conditional and Wasserstein GAN for Fault Samples Augmentation;2023 6th International Conference on Robotics, Control and Automation Engineering (RCAE);2023-11-03
5. LGMA-DRSN: a lightweight convex global multi-attention deep residual shrinkage network for fault diagnosis;Measurement Science and Technology;2023-08-02
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3