Failure Mode Classification for Rolling Element Bearings Using Time-Domain Transformer-Based Encoder
Author:
Affiliation:
1. Division of Mechanophysics, Graduate School of Science and Technology, Kyoto Institute of Technology, Kyoto 606-8585, Japan
2. Faculty of Mechanical Engineering, Kyoto Institute of Technology, Kyoto 606-8585, Japan
Abstract
Funder
Kyoto Institute of Technology
Publisher
MDPI AG
Link
https://www.mdpi.com/1424-8220/24/12/3953/pdf
Reference27 articles.
1. Sparse dictionary analysis via structure frequency response spectrum model for weak bearing fault diagnosis;Zhou;Measurement,2021
2. Applications of machine learning to machine fault diagnosis: A review and roadmap;Lei;Mech. Syst. Signal Process.,2020
3. A novel time–frequency Transformer based on self–attention mechanism and its application in fault diagnosis of rolling bearings;Ding;Mech. Syst. Signal Process.,2022
4. Fault diagnosis of rolling bearing of wind turbines based on the Variational Mode Decomposition and Deep Convolutional Neural Networks;Xu;Appl. Soft Comput.,2020
5. Michau, G., Chao, M., and Fink, O. (2018, January 24–27). Feature Selecting Hierarchical Neural Network for Industrial System Health Monitoring: Catching Informative Features with LASSO. Proceedings of the 2018 Annual Conference of the Prognostics and Health Management Society (PHM), Philadelphia, PA, USA.
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3