Log data-driven model and feature ranking for water saturation prediction using machine learning approach
Author:
Funder
NSERC
Equinor
Memorial University
InnovateNL
Publisher
Elsevier BV
Subject
Geotechnical Engineering and Engineering Geology,Fuel Technology
Reference119 articles.
1. Dynamic failure analysis of process systems using neural networks;Adedigba;Process Saf. Environ. Protect.,2017
2. May. Functional Network soft sensor for formation porosity and water saturation in oil wells;Adeniran,2009
3. Determination of oil well production performance using artificial neural network (ANN) linked to the particle swarm optimization (PSO) tool;Ahmadi;Petroleum,2015
4. Connectionist model predicts the porosity and permeability of petroleum reservoirs by means of petro-physical logs: application of artificial intelligence;Ahmadi;J. Petrol. Sci. Eng.,2014
5. Improved permeability prediction of a heterogeneous carbonate reservoir using artificial neural networks based on the flow zone index approach;Ahrimankosh;Petrol. Sci. Technol.,2011
Cited by 51 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Application of support vector machines and genetic algorithms to fluid identification in Offshore Granitic subduction hill reservoirs;Geoenergy Science and Engineering;2024-09
2. Deep learning algorithm-enabled sediment characterization techniques to determination of water saturation for tight gas carbonate reservoirs in Bohai Bay Basin, China;Scientific Reports;2024-05-28
3. Effective approach to assess higher heating value of biomass from ultimate and proximate analysis;The Canadian Journal of Chemical Engineering;2024-05-21
4. Permeability modelling in a highly heterogeneous tight carbonate reservoir using comparative evaluating learning-based and fitting-based approaches;Scientific Reports;2024-05-03
5. Developing a hybridized thermodynamic and data-driven model for catalytic supercritical water gasification of biomass for hydrogen production;Energy Conversion and Management;2024-05
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3