Deep learning algorithm-enabled sediment characterization techniques to determination of water saturation for tight gas carbonate reservoirs in Bohai Bay Basin, China

Author:

Hu Xiao,Meng Qingchun,Guo Fajun,Xie Jun,Hasi Eerdun,Wang Hongmei,Zhao Yuzhi,Wang Li,Li Ping,Zhu Lin,Pu Qiongyao,Feng Xuguang

Abstract

AbstractUnderstanding water saturation levels in tight gas carbonate reservoirs is vital for optimizing hydrocarbon production and mitigating challenges such as reduced permeability due to water saturation (Sw) and pore throat blockages, given its critical role in managing capillary pressure in water drive mechanisms reservoirs. Traditional sediment characterization methods such as core analysis, are often costly, invasive, and lack comprehensive spatial information. In recent years, several classical machine learning models have been developed to address these shortcomings. Traditional machine learning methods utilized in reservoir characterization encounter various challenges, including the ability to capture intricate relationships, potential overfitting, and handling extensive, multi-dimensional datasets. Moreover, these methods often face difficulties in dealing with temporal dependencies and subtle patterns within geological formations, particularly evident in heterogeneous carbonate reservoirs. Consequently, despite technological advancements, enhancing the reliability, interpretability, and applicability of predictive models remains imperative for effectively characterizing tight gas carbonate reservoirs. This study employs a novel data-driven strategy to prediction of water saturation in tight gas reservoir powered by three recurrent neural network type deep/shallow learning algorithms—Gated Recurrent Unit (GRU), Recurrent Neural Networks (RNN), Long Short-Term Memory (LSTM), Support Vector Machine (SVM), K-nearest neighbor (KNN) and Decision tree (DT)—customized to accurately forecast sequential sedimentary structure data. These models, optimized using Adam's optimizer algorithm, demonstrated impressive performance in predicting water saturation levels using conventional petrophysical data. Particularly, the GRU model stood out, achieving remarkable accuracy (an R-squared value of 0.9973) with minimal errors (RMSE of 0.0198) compared to LSTM, RNN, SVM, KNN and, DT algorithms, thus showcasing its proficiency in processing extensive datasets and effectively identifying patterns. By achieving unprecedented accuracy levels, this study not only enhances the understanding of sediment properties and fluid saturation dynamics but also offers practical implications for reservoir management and hydrocarbon exploration in complex geological settings. These insights pave the way for more reliable and efficient decision-making processes, thereby advancing the forefront of reservoir engineering and petroleum geoscience.

Funder

Natural Science Foundation of Shandong Province

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3