Fault diagnosis of power grid based on variational mode decomposition and convolutional neural network
Author:
Publisher
Elsevier BV
Subject
Electrical and Electronic Engineering,Energy Engineering and Power Technology
Reference25 articles.
1. Fault location in power distribution network with presence of distributed generation resources using impedance based method and applying πline model;Dashti;Energy,2018
2. Fault diagnosis of power system considering communication system information transmission error;Zhang;IEEE Power Energy Soc. Gen. Meet., Beijing,2018
3. Study on Bayesian network parameters learning of power system component fault diagnosis based on particle swarm optimization;Shi;Int. J. Smart Grid Clean Energy.,2013
4. Fault section identification in smart distribution systems using multi-source data based on fuzzy Petri nets;Iman;IEEE Transactions on Smart Grid,2020
5. A fuzzy Petri net based approach for fault diagnosis in power systems considering temporal constraints;Zhang;Int J Electr Power Energy Syst,2016
Cited by 38 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Traveling wave fault location for AC transmission lines: an approach based on the application of EMD and Teager energy operator;Electrical Engineering;2024-08-13
2. Fault diagnosis of the distribution network based on the D-S evidence theory Bayesian network;Frontiers in Energy Research;2024-08-07
3. Research on intelligent power grid operation and maintenance and fault prediction system based on artificial intelligence;2024 IEEE 4th International Conference on Electronic Technology, Communication and Information (ICETCI);2024-05-24
4. A bearing fault diagnosis method based on M-SSCNN and M-LR attention mechanism;Structural Health Monitoring;2024-04-29
5. Distributed self-healing control of single-phase grounding fault in neutral point non-effective grounding system;International Journal of Emerging Electric Power Systems;2024-04-01
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3