A bearing fault diagnosis method based on M-SSCNN and M-LR attention mechanism

Author:

Li Yonghua1ORCID,Men Zhihui1,Bai Xiaoning2,Xia Qing2,Zhang DongXu1

Affiliation:

1. College of Locomotive and Rolling Stock Engineering, Dalian Jiaotong University, Dalian, Liaoning, China

2. School of Mechanical Engineering, Dalian Jiaotong University, Dalian, Liaoning, China

Abstract

Bearing fault diagnosis is vital for mechanical maintenance and fault prediction. It ensures equipment safety, extends lifespan, reduces maintenance costs, and improves production efficiency. Nevertheless, it should be acknowledged that some existing diagnostic methods have achieved high accuracy rates in certain scenarios. However, the challenge lies in their limited generalization capabilities, which can lead to reduced accuracy when applied to diverse or unseen conditions. In this study, we proposed a new bearing fault diagnosis method to address the issue of low accuracy caused by the inadequate generalization of models in the process of rolling bearing fault diagnosis. The method is based on a multi-scale sliding convolution neural network and multi-level residual attention mechanism, the model exhibits high accuracy, strong generalization capability, and lightweight structure. Firstly, the time domain signal of the bearing vibration is converted into a two-dimensional time–frequency map, and the image is pixel-segmented using superpixel segmentation techniques. Next, a multi-scale parallel convolution approach is used to extract features to improve the adaptability and robustness of the model to objects of different sizes and scales. Sliding convolution is used instead of pooling to avoid the problem of feature loss caused by maximum pooling and average pooling. A multi-level attention mechanism is then introduced for all stacked channels to focus on the more important and critical information of the module, and residual connections are added to prevent degradation of the network performance. Finally, the proposed method is passed through the fully connected layer for classification using the Softmax classifier. Experimental verification using public datasets and experimental data of our research group shows that the proposed method has better performance than the existing diagnostic methods and diagnostic models. The proposed method offers an advanced and innovative solution in the domain of bearing fault diagnosis.

Funder

National Natural Science Foundation of China

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3