Time series forecasting using ensemble learning methods for emergency prevention in hydroelectric power plants with dam
Author:
Publisher
Elsevier BV
Subject
Electrical and Electronic Engineering,Energy Engineering and Power Technology
Reference79 articles.
1. Two-stage and multi-stage decompositions for the medium-term hydrothermal scheduling problem: a computational comparison of solution techniques;Beltrn;Int. J. Electr. Power Energy Syst.,2021
2. Comparing spatial and scenario decomposition for stochastic hydrothermal unit commitment problems;Scuzziato;IEEE Trans. Sustain. Energy,2018
3. Assessing solution quality and computational performance in the long-term generation scheduling problem considering different hydro production function approaches;Fredo;Renew. Energy,2019
4. Mixed-integer nonseparable piecewise linear models for the hydropower production function in the unit commitment problem;Finardi;Electr. Power Syst. Res.,2020
5. Solving stochastic hydrothermal unit commitment with a new primal recovery technique based on lagrangian solutions;Scuzziato;Int. J. Electr. Power Energy Syst.,2021
Cited by 68 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Enhanced multi-step streamflow series forecasting using hybrid signal decomposition and optimized reservoir computing models;Expert Systems with Applications;2024-12
2. One-step vs horizon-step training strategies for multi-step traffic flow forecasting with direct particle swarm optimization grid search support vector regression and long short-term memory;Expert Systems with Applications;2024-10
3. Mid-term electricity demand forecasting using improved multi-mode reconstruction and particle swarm-enhanced support vector regression;Energy;2024-09
4. Evaluating machine learning models in predicting dam inflow and hydroelectric power production in multi-purpose dams (case study: Mahabad Dam, Iran);Applied Water Science;2024-08-20
5. A combination model for displacement prediction of high arch dams stacking five kinds of temperature factors;Transactions of the Institute of Measurement and Control;2024-07-27
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3