Joint bidding and pricing for electricity retailers based on multi-task deep reinforcement learning

Author:

Xu Hongsheng,Wu Qiuwei,Wen Jinyu,Yang Zhihong

Funder

Natural Science Foundation of Jiangsu Province

State Grid Corporation of China

Science and Technology Foundation of State Grid Corporation of China

Publisher

Elsevier BV

Subject

Electrical and Electronic Engineering,Energy Engineering and Power Technology

Reference69 articles.

1. Market, Market Operations in Electric Power Systems: Forecasting, Scheduling, and Risk Management;Shahidehpour,2002

2. Demand side management: Demand response, intelligent energy systems, and smart loads;Palensky;IEEE Transaction on Industrial Informatics,2011

3. Automated Demand Response for Smart Buildings and Microgrids: The State of the Practice and Research Challenges;Samad;Proceedings of the IEEE, Apr.,2016

4. The values of market-based demand response on improving power system reliability under extreme circumstances;Wang;Appl Energy,2017

5. Demand-side view of electricity markets;Kirschen;IEEE Trans Power Syst,2003

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Multi-task deep learning for large-scale buildings energy management;Energy and Buildings;2024-03

2. Energy optimization management of microgrid using improved soft actor-critic algorithm;International Journal of Renewable Energy Development;2024-02-20

3. Research on optimal carbon emissions in the production decision of the coal-fired power plant;International Journal of Energy Sector Management;2023-12-28

4. Optimal Joint Bidding and Pricing of Electricity Retailers Using Multi-agent Deep Reinforcement Learning;2023 IEEE 7th Conference on Energy Internet and Energy System Integration (EI2);2023-12-15

5. Perception and decision-making for demand response based on dynamic classification of consumers;International Journal of Electrical Power & Energy Systems;2023-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3