Short-term Wind Power Forecasting Using the Hybrid Model of Improved Variational Mode Decomposition and Maximum Mixture Correntropy Long Short-term Memory Neural Network
Author:
Publisher
Elsevier BV
Subject
Electrical and Electronic Engineering,Energy Engineering and Power Technology
Reference41 articles.
1. Wind power forecast based on improved Long Short Term Memory network;Han;Energy,2019
2. A novel hybrid model based on Bernstein polynomial with mixture of Gaussians for wind power forecasting;Dong;Appl Energy,2021
3. Very short-term forecasting of wind power generation using hybrid deep learning model;Md;J Cleaner Prod,2021
4. Preliminary research of chaotic characteristics and prediction of short-term wind speed Time series;Zhong;Int J Bifurcation Chaos,2020
5. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model;Zhang;Appl Energy,2019
Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Short-term prediction of wind power using an improved kernel based optimized deep belief network;Energy Conversion and Management;2024-09
2. Sustainable optimization of micro-milling machining parameters considering reliability assessment;Mechanics Based Design of Structures and Machines;2024-08-09
3. Deep Learning based Framework for Option Price Forecasting;2024 IEEE 4th International Conference on Smart Information Systems and Technologies (SIST);2024-05-15
4. A short-term wind power prediction approach based on an improved dung beetle optimizer algorithm, variational modal decomposition, and deep learning;Computers and Electrical Engineering;2024-05
5. Accurate identification and confidence evaluation of automatic generation control command execution effect based on deep learning fusion model;Engineering Applications of Artificial Intelligence;2024-05
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3