Preliminary Research of Chaotic Characteristics and Prediction of Short-Term Wind Speed Time Series

Author:

Tian Zhongda1ORCID

Affiliation:

1. College of Information Science and Engineering, Shenyang University of Technology, 110870 Shenyang, P. R. China

Abstract

Short-term wind speed prediction has its special significance in wind power industry. However, due to the characteristics of the wind system itself, it is not easy to predict the short-term wind speed accurately. In order to solve the problem, this paper studies the chaotic characteristics and prediction of short-term wind speed time series. The short-term wind speed data at four time scales are collected as the research object. The predictability of short-term wind speed time series is determined by the Hurst exponent. The chaotic characteristics of short-time wind speed at different time scales are analyzed by the 0–1 test method for chaos and the maximum Lyapunov exponent method. The results show that the short-term wind speed time series has chaotic characteristics at different time scales. The phase-space reconstruction technology is introduced; delay time is determined by the C–C method; embedding dimension is obtained by the G–P method. Echo state network is improved to suppress the influence of input noise on prediction performance. At the same time, an improved grey Wolf optimization algorithm is proposed to optimize the parameters of reserve pool of the echo state network. The results of a case study show that, compared with state-of-the-art methods, the proposed prediction method improves the prediction accuracy and reduces the predictive errors.

Funder

the Science Research Project of Liaoning Education Department

the Natural Science Foundation of Liaoning Province of China

the Science program of Liaoning Province

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Modelling and Simulation,Engineering (miscellaneous)

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3