Affiliation:
1. College of Information Science and Engineering, Shenyang University of Technology, 110870 Shenyang, P. R. China
Abstract
Short-term wind speed prediction has its special significance in wind power industry. However, due to the characteristics of the wind system itself, it is not easy to predict the short-term wind speed accurately. In order to solve the problem, this paper studies the chaotic characteristics and prediction of short-term wind speed time series. The short-term wind speed data at four time scales are collected as the research object. The predictability of short-term wind speed time series is determined by the Hurst exponent. The chaotic characteristics of short-time wind speed at different time scales are analyzed by the 0–1 test method for chaos and the maximum Lyapunov exponent method. The results show that the short-term wind speed time series has chaotic characteristics at different time scales. The phase-space reconstruction technology is introduced; delay time is determined by the C–C method; embedding dimension is obtained by the G–P method. Echo state network is improved to suppress the influence of input noise on prediction performance. At the same time, an improved grey Wolf optimization algorithm is proposed to optimize the parameters of reserve pool of the echo state network. The results of a case study show that, compared with state-of-the-art methods, the proposed prediction method improves the prediction accuracy and reduces the predictive errors.
Funder
the Science Research Project of Liaoning Education Department
the Natural Science Foundation of Liaoning Province of China
the Science program of Liaoning Province
Publisher
World Scientific Pub Co Pte Lt
Subject
Applied Mathematics,Modelling and Simulation,Engineering (miscellaneous)
Cited by
30 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献