GFSegNet: A multi-scale segmentation model for mining area ground fissures
-
Published:2024-04
Issue:
Volume:128
Page:103788
-
ISSN:1569-8432
-
Container-title:International Journal of Applied Earth Observation and Geoinformation
-
language:en
-
Short-container-title:International Journal of Applied Earth Observation and Geoinformation
Author:
Chen Peng, Li PeixianORCID, Wang Bing, Ding Xingcheng, Zhang Yongliang, Zhang Tao, Yu TianXiang
Reference49 articles.
1. Robust pixel-level crack detection using deep fully convolutional neural networks;Alipour;J. Comput. Civ. Eng.,2019 2. SegNet: a deep convolutional encoder-decoder architecture for image segmentation;Badrinarayanan;IEEE Trans. Pattern Anal. Mach. Intell.,2017 3. Cao, H., Wang, Y., Chen, J., Jiang, D., Zhang, X., Tian, Q., Wang, M., 2023. Swin-Unet: Unet-Like Pure Transformer for Medical Image Segmentation, in: Computer Vision – ECCV 2022 Workshops. Springer. 205–218. 4. Chen, J., Lu, Y., Yu, Q., Luo, X., Adeli, E., Wang, Y., Lu, L., Yuille, A.L., Zhou, Y., 2021. TransUNet: Transformers Make Strong Encoders for Medical Image Segmentation. 5. Deep Learning based intelligent recognition of ground fissures;Chen;Springer Nature,2023
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|