Funder
Xiamen University
National Natural Science Foundation of China
Subject
Management, Monitoring, Policy and Law,Computers in Earth Sciences,Earth-Surface Processes,Global and Planetary Change
Reference38 articles.
1. Review of pavement defect detection methods;Cao;IEEE Access,2020
2. Deep learning-based crack damage detection using convolutional neural networks;Cha;Comput.-Aided Civ. Infrastruct. Eng.,2017
3. Autonomous concrete crack detection using deep fully convolutional neural network;Dung;Autom. Constr.,2019
4. Pixel-level cracking detection on 3D asphalt pavement images through deep-learning-based CrackNet-V;Fei;IEEE Trans. Intell. Transport. Syst.,2020
5. Feng, H., Li, W., Luo, Z., Chen, Y., Fatholahi, S. N., Cheng, M., & Li, J. (2021). GCN-Based Pavement Crack Detection Using Mobile LiDAR Point Clouds. IEEE Trans. Intell. Transport. Syst., 10.1109/TITS.2021.3099023.
Cited by
19 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献