1. E. Alsentzer, J.R. Murphy, W. Boag, W.H. Weng, D. Jin, T. Naumann, M.B.A. Mcdermott, Publicly Available Clinical BERT Embeddings, 2019, 72–78URL: https://aclanthology.org/W19-1909, 10.18653/V1/W19-1909.
2. Berg-Kirkpatrick, Taylor, David Burkett, Dan Klein, An empirical investigation of statistical significance in NLP, in: Proceedings of the 2012 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning, 2012.
3. A.B. Chapman, K.S. Peterson, P.R. Alba, S.L. DuVall, O.V. Patterson, Detecting Adverse Drug Events with Rapidly Trained Classification Models, Drug Saf. 42 (2019) 147. URL: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6373386/, 10.1007/S40264-018-0763-Y.
4. H. Eyre, A.B. Chapman, K.S. Peterson, J. Shi, P.R. Alba, M.M. Jones, T.L. Box, S.L. DuVall, O.V. Patterson, Launching into clinical space with medspaCy: a new clinical text processing toolkit in Python, in: AMIA Annual Symposium Proceedings 2021, 438. URL: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8861690/.
5. 2018 n2c2 shared task on adverse drug events and medication extraction in electronic health records;Henry;J. Am. Med. Inform. Assoc.,2020