1. A. D’Amour, K. Heller, D. Moldovan, B. Adlam, B. Alipanahi, A. Beutel, C. Chen, J. Deaton, J. Eisenstein, M.D. Hoffman, F. Hormozdiari, N. Houlsby, S. Hou, G. Jerfel, A. Karthikesalingam, M. Lucic, Y. Ma, C. McLean, D. Mincu, A. Mitani, A. Montanari, Z. Nado, V. Natarajan, C. Nielson, T.F. Osborne, R. Raman, K. Ramasamy, R. Sayres, J. Schrouff, M. Seneviratne, S. Sequeira, H. Suresh, V. Veitch, M. Vladymyrov, X. Wang, K. Webster, S. Yadlowsky, T. Yun, X. Zhai, D. Sculley, Underspecification presents challenges for credibility in modern machine learning (2020). arXiv:2011.03395.
2. Classifying cancer pathology reports with hierarchical self-attention networks;Gao;Artif. Intell. Med.,2019
3. Hierarchical attention networks for information extraction from cancer pathology reports;Gao;J. Am. Med. Inform. Assoc.,2017
4. S. Gao, A. Ramanathan, G. Tourassi, Hierarchical convolutional attention networks for text classification, in: Proceedings of The Third Workshop on Representation Learning for NLP, Association for Computational Linguistics, Melbourne, Australia, 2018, pp. 11–23. doi:10.18653/v1/W18-3002. URL https://www.aclweb.org/anthology/W18-3002.
5. Deep active learning for classifying cancer pathology reports;De Angeli;BMC Bioinformatics,2021