Hierarchical attention networks for information extraction from cancer pathology reports

Author:

Gao Shang1,Young Michael T1,Qiu John X1,Yoon Hong-Jun1,Christian James B1,Fearn Paul A2,Tourassi Georgia D1,Ramanthan Arvind1

Affiliation:

1. Computational Science and Engineering Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA

2. Surveillance Informatics Branch, Division of Cancer Control and Population Sciences, National Cancer Institute, Bethesda, MD, USA

Abstract

Abstract Objective We explored how a deep learning (DL) approach based on hierarchical attention networks (HANs) can improve model performance for multiple information extraction tasks from unstructured cancer pathology reports compared to conventional methods that do not sufficiently capture syntactic and semantic contexts from free-text documents. Materials and Methods Data for our analyses were obtained from 942 deidentified pathology reports collected by the National Cancer Institute Surveillance, Epidemiology, and End Results program. The HAN was implemented for 2 information extraction tasks: (1) primary site, matched to 12 International Classification of Diseases for Oncology topography codes (7 breast, 5 lung primary sites), and (2) histological grade classification, matched to G1–G4. Model performance metrics were compared to conventional machine learning (ML) approaches including naive Bayes, logistic regression, support vector machine, random forest, and extreme gradient boosting, and other DL models, including a recurrent neural network (RNN), a recurrent neural network with attention (RNN w/A), and a convolutional neural network. Results Our results demonstrate that for both information tasks, HAN performed significantly better compared to the conventional ML and DL techniques. In particular, across the 2 tasks, the mean micro and macroF-scores for the HAN with pretraining were (0.852,0.708), compared to naive Bayes (0.518, 0.213), logistic regression (0.682, 0.453), support vector machine (0.634, 0.434), random forest (0.698, 0.508), extreme gradient boosting (0.696, 0.522), RNN (0.505, 0.301), RNN w/A (0.637, 0.471), and convolutional neural network (0.714, 0.460). Conclusions HAN-based DL models show promise in information abstraction tasks within unstructured clinical pathology reports.

Funder

NIH

Lawrence Livermore National Laboratory

Los Alamos National Laboratory

Oak Ridge National Laboratory

Publisher

Oxford University Press (OUP)

Subject

Health Informatics

Reference29 articles.

1. Aiming high—changing the trajectory for cancer;Lowy;New Engl J Med.,2016

2. Ask me anything: dynamic memory networks for natural language processing;Kumar;Proc Int Conf Mach Learn.,2016

3. Convolutional neural networks for sentence classification;Kim;arXiv preprint arXiv:14085882.,2014

4. A critical review of recurrent neural networks for sequence learning;Lipton;arXiv preprint arXiv:150600019.,2015

Cited by 85 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3